2015 Student Landscape Architecture Design Competition Prize Winners

<table>
<thead>
<tr>
<th>Prize</th>
<th>Title</th>
<th>Author(s)</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST PRIZE</td>
<td>Scales of Time</td>
<td>Lucia de Blas Noval, Gonzalo Bassulta Calvo, Ana Paola Castillo Rodriguez, Marco Orobello</td>
<td>University of Valladolid, Spain</td>
</tr>
<tr>
<td>SECOND PRIZE</td>
<td>Growing Dam</td>
<td>Ran Wu, Nan Hu, Wei Liu, Wanyi Li, Xiangyan Wei</td>
<td>Beijing Forestry University, China</td>
</tr>
<tr>
<td>THIRD PRIZE</td>
<td>Carbon + Footprint</td>
<td>Binquan Huang</td>
<td>Tongji University, China</td>
</tr>
</tbody>
</table>
FIRST PRIZE
IFLA Group Han Prize for Student Landscape Architecture

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Scales of Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR(S)</td>
<td>Lucia de Blas Noval, Gonzalo Bassulta Calvo, Ana Paola Castillo Rodriguez, Marco Orobello</td>
</tr>
<tr>
<td>INSTITUTION</td>
<td>University of Valladolid, Spain</td>
</tr>
</tbody>
</table>

JURY NOTES

This project deals with the relationship between landscape, architecture and time in Valladolid, Spain. The jury commends the way the analysis was presented and the apparent logic in the process and graphics. The project acknowledged a previously unloved and omitted space, and endeavored to give it new purpose and meaning. The proposal emerged from “careful study of the place, of the city, of the river and of the time.” It included drawings of the past, present and future.
SECOND PRIZE
IFLA Zvi Miller Prize

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Growing Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR(S)</td>
<td>Ran Wu, Nan Hu, Wei Liu, Wanyi Li, Xiangyan Wei</td>
</tr>
<tr>
<td>INSTITUTION</td>
<td>Beijing Forestry University, China</td>
</tr>
</tbody>
</table>

JURY NOTES

This project provides a fresh view for an old problem of water inundation in the Netherlands, and suggests a conceptually different approach to flood attenuation in this area. Three alternative scenarios were outlined: conventional, economical, environmental, and although untested, could provide the basis upon which a more viable combined approach could be taken. The jury noted the clarity of graphic communication.
GROWING DAM

To construct a multi-level, dynamic growing and sustainable green dam intercalated in Shanghai, China.

PROBLEM

The traditional flat dam design, although lessening water wastage, reduces the use of land and sometimes leads to negative secondary environmental impacts, such as soil erosion of the dam and landscape instability.

CONCEPT

The concept of the dam is to combine ecological, agricultural, and cultural functions in a sustainable manner, forming a new living environment.

SITE

The site is a flat land with a steep escarpment on the far side.

STRATEGY

This strategy is to construct a multi-level, dynamic growing and sustainable green dam intercalated in Shanghai, China.

DESIGN ANALYSIS

CLASSIFIED DESIGN

DYNAMIC EXPECTATION

2020 s - 2030 s - 2040 s - 2050 s
This project dealt with the landscape reclamation of a disused quarry site in Songjian District, Shanghai, and carefully considered its carbon footprint. The jury appreciated the multidimensional analysis and the consideration of three-dimensional space. The proposal was intimate and human-scaled, and combined a strong educational function and the potential for multiple interpretations of the program.
Carbon Footprint

Background & History

The carbon footprint is the concept that the amount of greenhouse gases emitted by transportation, food production, and other sources can be compared to each other in terms of their impact on the climate. It is calculated based on the amount of CO2 emitted per person or per activity. The goal is to reduce this footprint by making more sustainable choices, such as using public transport, reducing meat consumption, and recycling.

Site Analysis

The site analysis involves understanding the site's natural features, such as topography, vegetation, and water bodies, as well as the existing infrastructure and transportation networks. This information is used to design a park that is both functional and aesthetically pleasing.

Layout & Planning

The layout of the park is designed to create a network of paths that connect different sections of the park. The park is divided into zones based on their intended use, such as recreational, educational, and community areas. The design also takes into consideration the park's location and the need for connectivity with other areas.

Concept Explanation

The concept section explains the design principles and strategies used in the park's design. This includes the use of sustainable materials, the integration of natural elements, and the provision of amenities that enhance the visitor experience.

Site Selection

The site selection is based on the availability of land, the need for accessibility, and the potential for ecological restoration. The selected site is a former quarry site that is located in a natural area, which provides an ideal setting for the park's design.

Early Design

The early design phase involves creating a master plan that outlines the overall layout of the park. This plan includes the placement of key elements, such as pathways, water features, and outdoor spaces. The design is evaluated for its functionality, sustainability, and aesthetic appeal.

Final Design

The final design is a detailed plan that includes the exact placement of elements, such as benches, lighting, and planting. The design is reviewed by stakeholders to ensure that it meets their needs and expectations.

CarbOn + Footprint

The Carbon + Footprint section provides an overview of the carbon footprint of various activities and materials used in the park's design. This includes the calculation of greenhouse gas emissions for different aspects of the park, such as transportation, construction, and maintenance. The goal is to make the park as carbon-neutral as possible.

Biomes

The biomes section identifies the different ecosystems present in the park, such as wetlands, forests, and grasslands. This information is used to design appropriate vegetation and other elements that enhance the park's ecological value.

Monitoring

The monitoring section outlines the strategies used to assess the park's performance over time. This includes regular evaluations of the park's environmental impact, visitor satisfaction, and maintenance needs. The results of these evaluations are used to refine the park's design and management strategies.

Conclusion

The conclusion section highlights the key outcomes of the park's design and construction. This includes the achievement of the park's goals, such as providing a sustainable and enjoyable public space, enhancing the local economy, and promoting environmental awareness.